Greatest fixed point

In theoretical computer science, the modal μ-calculus (Lμ, Lμ, sometimes just μ-calculus, although this can have a more general meaning) is an extension of propositional modal logic (with many modalities) by adding the least fixed point operator μ and the greatest fixed point operator ν, thus a fixed-point logic. The (propositional, modal) μ-calculus originates with Dana Scott and Jaco de Bakker, and was fu… WebThe least fixed point of a functor F is the initial algebra for F, that is, the initial object in the category of F-algebras defined by the functor.We can define a preorder on the algebras where c <= d if there is a morphism from c to d.By the definition of an initial object, there is a morphism from the initial algebra to every other algebra.

haskell - Least fix point, greatest fix point - Stack Overflow

WebApr 9, 2024 · So instead, the term "greatest fixed point" might as well be a synonym for "final coalgebra". Some intuition carries over ("fixed points" can commonly be … WebIf we have a minimal fixed point operator, then this formula is found wihtin s. If s is part of the set x and x is the smallest set satisfying the equation x=phi. And note that x may … how long ago was january 1st 2023 https://itstaffinc.com

Modal μ-calculus - Wikipedia

WebTarski’s lattice theoretical fixed point theorem states that the set of fixed points of F is a nonempty complete lattice for the ordering of L. ... and the greatest fixed point of. F. restricted ... WebThe first-order theory of MALL (multiplicative, additive linear logic) over only equalities is an interesting but weak logic since it cannot capture unbounded (infinite) behavior. Instead of accounting for unbounded behavior via the addition of the exponentials (! and ?), we add least and greatest fixed point operators. WebMetrical fixed point theory developed around Banach’s contraction principle, which, in the case of a metric space setting, can be briefly stated as follows. Theorem 2.1.1 Let ( X, d) be a complete metric space and T: X → X a strict contraction, i.e., a map satisfying (2.1.1) where 0 ≤ a < 1 is constant. Then (p1) how long ago was january 23rd 2023

Tarski

Category:Fixed point - Encyclopedia of Mathematics

Tags:Greatest fixed point

Greatest fixed point

Knaster–Tarski theorem - Wikipedia

WebJun 23, 2024 · Somewhat analogously, most proof methods studied therein have focused on greatest fixed-point properties like safety and bisimilarity. Here we make a step towards categorical proof methods for least fixed-point properties … WebFixed points Creating new lattices from old ones Summary of lattice theory Kildall's Lattice Framework for Dataflow Analysis Summary Motivation for Dataflow Analysis A compiler can perform some optimizations based only on local information. For example, consider the following code: x = a + b; x = 5 * 2;

Greatest fixed point

Did you know?

Web1. Z is called a fixed point of f if f(Z) = Z . 2. Z is called the least fixed point of f is Z is a fixed point and for all other fixed points U of f the relation Z ⊆ U is true. 3. Z is called … WebFind the Fixed points (Knaster-Tarski Theorem) a) Justify that the function F(X) = N ∖ X does not have a Fixed Point. I don't know how to solve this. b) Be F(X) = {x + 1 ∣ x ∈ X}. …

as the greatest fixpoint of f as the least fixpoint of f. Proof. We begin by showing that P has both a least element and a greatest element. Let D = { x x ≤ f ( x )} and x ∈ D (we know that at least 0 L belongs to D ). Then because f is monotone we have f ( x) ≤ f ( f ( x )), that is f ( x) ∈ D . See more In the mathematical areas of order and lattice theory, the Knaster–Tarski theorem, named after Bronisław Knaster and Alfred Tarski, states the following: Let (L, ≤) be a complete lattice and let f : L → L be an … See more Let us restate the theorem. For a complete lattice $${\displaystyle \langle L,\leq \rangle }$$ and a monotone function See more • Modal μ-calculus See more • J. B. Nation, Notes on lattice theory. • An application to an elementary combinatorics problem: Given a book with 100 pages and 100 lemmas, prove that there is some lemma written on … See more Since complete lattices cannot be empty (they must contain a supremum and infimum of the empty set), the theorem in particular guarantees the existence of at least one fixed … See more Weaker versions of the Knaster–Tarski theorem can be formulated for ordered sets, but involve more complicated assumptions. For example: Let L be a partially … See more • S. Hayashi (1985). "Self-similar sets as Tarski's fixed points". Publications of the Research Institute for Mathematical Sciences. 21 (5): 1059–1066. doi: • J. Jachymski; L. … See more WebMar 7, 2024 · As we have just proved, its greatest fixpoint exists. It is the least fixpoint of L, so P has least and greatest elements, that is more generally, every monotone function …

WebOct 22, 2024 · The textbook approach is the fixed-point iteration: start by setting all indeterminates to the smallest (or greatest) semiring value, then repeatedly evaluate the equations to obtain new values for all indeterminates. WebThat is, if you have a complete lattice L, and a monotone function f: L → L, then the set of fixed points of f forms a complete lattice. (As a consequence, f has a least and greatest fixed point.) This proof is very short, but it's a bit of a head-scratcher the first time you see it, and the monotonicity of f is critical to the argument.

WebWe say that u ⁎ ∈ D is the greatest fixed point of operator T: D ⊂ X → X if u ⁎ is a fixed point of T and u ≤ u ⁎ for any other fixed point u ∈ D. The smallest fixed point is defined similarly by reversing the inequality. When both, the least and the greatest fixed point of T, exist we call them extremal fixed points.

WebJun 5, 2024 · Depending on the structure on $ X $, or the properties of $ F $, there arise various fixed-point principles. Of greatest interest is the case when $ X $ is a … how long ago was january 21 2017WebLet f be an increasing and right continuous selfmap of a compact interval X of R and there exists a point x 0 ∈ X such that f ( x 0) ≤ x 0. Then the limit z of the sequence { fn ( x0 )} is the greatest fixed point of f in S _ ( x 0) = { x ∈ X: x ≤ x 0 }. Proof. z is a fixed point of f in S _ ( x0) since f is right continuous. how long ago was january 28thWebMar 21, 2024 · $\begingroup$ @thbl2012 The greatest fixed point is very sensitive to the choice of the complete lattice you work on. Here, I started with $\mathbb{R}$ as the top element of my lattice, but I could have chosen e.g. $\mathbb{Q}$ or $\mathbb{C}$. Another common choice it the set of finite or infinite symbolic applications of the ocnstructors, … how long ago was january 20 2020WebMar 24, 2024 · 1. Let satisfy , where is the usual order of real numbers. Since the closed interval is a complete lattice , every monotone increasing map has a greatest fixed … how long ago was january 21stWebDec 15, 1997 · Arnold and Nivat [1] proposed the greatest fixed points as semantics for nondeterministic recursive programs, and Niwinski [34] has extended their approach to alternated fixed points in order to cap- ture the infinite behavior of context-free grammars. how long ago was january 24 2021how long ago was january 2007WebMay 13, 2015 · For greatest fixpoints, you have the dual situation: the set contains all elements which are not explicitly eliminated by the given conditions. For S = ν X. A ∩ ( B … how long ago was january 18 2022